
Construction of the LTP Optical
Bench Interferometer

David Robertson for Christian Killow,

J Bogenstahl, F Guzmán Cervantes, M Perreur-Lloyd,
F Steier and H Ward

LISA Symposium

Goddard, 19-23 June 2006



LISA Symposium, Goddard, 19-23 June 2006

Outline

ν LTP optical bench overview

ν Engineering model to flight model
ν Concentrate on the changes

ν Fibre Injectors
ν Bringing light from optical fibres onto the optical bench

ν Positioning optical beams
ν Tolerances
ν How to do it
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LTP Optical layout
ν The purpose of the optical bench is to provide an optical measurement

of the displacement of the two inertial test masses
ν Sensitivity of order 10pm/rt(Hz)
ν The optical layout has two beams (of slightly different frequency) coming

onto the bench, four recombinations and two test mass reflection points
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Historical progression of bonded OB’s
ν In every case the

critical components are
fused silica and are
hyroxy-catalysis bonded
to a low expansion
baseplate of ULE or
ZerodurTest piece

Interferometry
prototype

Engineering model

Flight model
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EM -> FM

ν The LTP engineering model (EM) was constructed in RAL

ν EM successfully tested at TNO and Hannover
ν Mechanical strength proven at TNO
ν Noise performance demonstrated at Hannover
ν Overall, demonstrated the advanced alignment and construction techniques

required for an interferometer of this complexity

ν Flight model is essentially same physical layout as the engineering model
but some crucial differences
ν Fibre injectors need major development
ν Optical alignment tolerances need to be tightened significantly
ν Lightweighting required
ν FM has to operate with free floating test masses in the optical chain
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Optical beam position at TM’s

Test mass
nominal beam
reflection
points

ν Challenging requirement is to hit a virtual point in space to within ±25 _m

ν Has to hit nominal reflection point to avoid test mass jitter coupling into
measurement
ν Can’t drive TM to ifo ‘sweet spot’ as TM control electronics too noisy away

from electrode housing ‘sweet spot’
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Fibre injectors - some history

ν The “fibre injectors” match the optical beam from the optical fibre onto
the optical bench
ν Require good output beam quality and good long term pointing stability

ν The “EM” OBI was far from being a true EM

ν For the EM build commercial Fibre Injectors (FIOSs) were adopted – due
to time and cost constraints

ν For the FM we need to move to
ν an injector capable of more precise alignment than the EM versions
ν a design that is magnetically (and otherwise) clean
ν a design that can be satisfactorily space qualified

ν Lacking time and resources to maintain multiple development strands,
the UGL goal from the start has been to focus on an essentially
monolithic fused silica FIOS design
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Fibre injector assembly − optical design
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ν Significant design drivers are:

ν Optimisation of the beam matching (size, curvature)

at the critical OBI interference points

ν PD12A/B and PD1A/B

ν Different distances from the fibre injectors to

the photodiodes

ν Minimisation of the beam size at the proof masses
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Fiber injectors - optical design

ν Require aspheric lenses to minimise
spherical aberation
ν See modelling results

ν Twin lens assembly
ν Interlens spacing available for

adjustment purposes
ν Easier manufacturability of lenses

ν The interference quality can be
optimised by building the two fibre
injectors with different fibre to lens and
interlens spacings

ν Same curvature for all lenses:
R=7.45mm
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Modelling and Tolerancing

ν Fibre injector modelled in Zemax to achieve optimal design and find required
component tolerances

ν Twin lens design also allows compensation of manufacturing tolerances of the
lenses and fixed spacer
ν For a +/- 40 micron manufacturing error in lens length satisfactory absolute beam sizes

and curvatures can be recovered by adjustment of the inter-lens spacing over a 400
micron range

ν Adjustment precision required is (a not too demanding) +/- 20 microns

ν More significant is the effect of an error in knowledge of the fibre exit waist size
ν Much effort has been invested in development of beam size metrology
ν Current measurements are now well understood, but a final check of effective beam

size when the embedded fibre is bonded onto a fused silica spacer remains to be done

FIOS 1 design FIOS 2 design
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ZEMAX optical modelling results

ν Assuming a beam waist at the fibre output of 4 microns, for FIOS 1
the spacer length between the fibre exit and the first lens curved
surface is 6.250 mm and the interlens gap to 4.619 mm

ν A suitably matching design for FIOS 2 is obtained by adjusting the
spacer length between the fibre exit and the first lens curved surface
to 6.500 mm and also adjusting the interlens gap to 3.353 mm

ν This positions the beam waist between the test masses and optimises
the interference quality at the PD12A/B photodiodes
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Beam parameters

ν These example designs yield
essentially perfect matching
between the interfering beams
at the x1, x1-x2 and reference
interference points

ν As expected, the interfering
beams at the frequency noise
recombination photodiodes are
not perfectly matched
ν beam size matching is

essentially perfect
ν curvature mismatch will limit

fringe visibility to ~92%

ν As a useful summary, the
beam parameters at the main
photodiodes (extracted from
the data presented earlier) are
shown in the table opposite
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Typical beam size matching

ν Typical results of modelling the FIOS
ν Results shown are for PD12_2 with nominal FIOS 1 and FIOS 2 designs
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Typical beam wavefront matching

ν Typical results of modelling the FIOS
ν Results shown are for PD12_2 with nominal FIOS 1 and FIOS 2 designs
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Beam size matching
spheric vs aspheric lenses

ν Comparison of aspherically corrected FIOS and spherical lens design



LISA Symposium, Goddard, 19-23 June 2006

-3 -2 -1 0 1 2 3
-pi

-2

-1

0 

1 

2 

pi 

radial position from beam centre (mm)

p
h
a
s
e
 
(
r
a
d
i
a
n
s
) FIOS1 - PD12B - asphere

FIOS2 - PD12B - asphere
FIOS1 - PD12B - sphere
FIOS2 - PD12B - sphere

Beam wavefronts matching
spheric vs aspheric lenses

ν Comparison of aspherically corrected FIOS and spherical lens design
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Fibre mounting strategy

ν Fibre bonded into fused silica capillary tubing

ν Fibre/capillary tube assembly bonded into hole in fused silica disk

ν Disk face and fibre end polished flat for bonding to lens
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Complete FI design

ν The second lens is positioned using an interferometric phase
camera readout to ensure the beam parameters are as required
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Optical beam position at TM’s

Test mass
nominal beam
reflection
points

ν Challenging requirement is to hit a virtual point in space to within ±25 _m

ν How the alignment will be done
ν Alignment in z and _ (‘vertical’)
ν Alignment in y and _ (‘horizontal’)
ν Adjustment principle
ν Beam position and measurement with respect to OB baseplate
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Coordinate transfer

ν The nominal beam centre at
defined positions (relative to the
OB baseplate) can be extracted
from the optical modelling
program, OptoCad

ν These can be used in conjunction
with the calibrated quadrant
photodiode (CQPD) calibration data
to place the photodiodes in the
required positions

ν The beam can then be aligned to
the photodiodes

ν The flow diagram opposite is taken
from the alignment plan (S2-UGL-
PL-3002)
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Building up the OB
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Building up the OB
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Building up the OB

This is OptoCad (Version 0.80h) by Roland Schilling.
All rights reserved. ABSOLUTELY NO WARRANTY!

Input of optical component data from file 1-fi-ref.oc

Beam # 1:
       x2[m]        y2[m]     an2[deg] label
 56.00000E-3  100.0000E-3          0.0 @ beam start
 56.00000E-3  67.85700E-3  45.00000E+0 # BS16
 53.81601E-3  60.14149E-3 -150.8049E+0 + BS16
 53.81601E-3 -300.0000E-3  180.0000E+0 # bottom border

       x2[m]        y2[m]     an2[deg] label
 56.00000E-3  67.85700E-3  45.00000E+0 # BS16
 450.0000E-3  67.85700E-3          0.0 # right border

Beam # 1:
       x2[m]        y2[m]     an2[deg] label
 56.00000E-3  100.0000E-3          0.0 @ beam start
 56.00000E-3  67.85700E-3  45.00000E+0 # BS16
 53.81601E-3  60.14149E-3 -150.8049E+0 + BS16
 53.81601E-3 -300.0000E-3  180.0000E+0 # bottom border

       x2[m]        y2[m]     an2[deg] label
 56.00000E-3  67.85700E-3  45.00000E+0 # BS16
 450.0000E-3  67.85700E-3          0.0 # right border

OptoCad statistics:
  Number of optical components:  6
  Number of optical surfaces:  12
  Number of optical cavities:  0
  Number of input beams:  1
  Number of ray segments:  8
  Number of beams split off:  2
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Building up the OB

Dummy TM mirrors
will be used during
alignment. They
will have large
diameter (15cm)
so that their
location and
orientation can be
measured with the
CMM
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Building up the OB

Dummy TM mirrors
will be used during
alignment. They
will have large
diameter (15cm)
so that their
location and
orientation can be
measured with the
CMM
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Beam position measurement
ν Use a quadrant photodiode (QPD) as an optical target

ν Mount the QPD in an aluminium block

ν Calibrate the position of the QPD with respect to the block using a
stable optical beam and a coordinate measurement machine (CMM)

ν Once the QPD is calibrated, it can be positioned with respect to the
bench using the CMM and the beam aligned to the QPD
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Alignment in z and _ (‘vertical’)

ν ‘Vertical’ (out-of-plane) alignment depends on
ν FIOS alignment with respect to baseplate
ν Component manufacture

ν Mirror/beamsplitter component perpendicularity
ν Baseplate flatness

ν An optical shop has demonstrated component perpendicularity at the
sub-arcsecond level

ν The baseplate bonding surface will be polished to _/4 over 100mm
length scales

ν The FIOS will be aligned using the adjustable bonding technique
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Optical components
ν Beamsplitter, beamcombiner and mirror designs

completed and flight components currently being
manufactured

Raw material

Mirrors and
beamsplitters
during
manufacturing
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Alignment in y and _ (‘horizontal’)
ν The precision alignment in the ‘horizontal’ comes from the positioning

of the last optical component before the TM: BS1 and BS3

ν Alignment of adjustable components on the OB uses two micropositioner
fingers to adjust the remaining two degrees of freedom:
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The positioners

ν The positioners each consist of a DC stepper section (large range, sub-
micron resolution) and a PZT stage (small range, 10nm resolution)
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ν The FIOS alignment principle and CAD
drawings of the alignment

ν Actuator movements of ~1_m will be
required and this is achievable

z and _: FIOS alignment
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Conclusions

ν LTP optical bench answers many of the LISA optical bench questions

ν Construction

ν Stability

ν Interferometry

ν Fibre injectors

ν Well studied solution

ν Construction underway

ν Optical alignment

ν Precision required

ν Solution in place

ν Optical components being manufactured
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Questions?


